Six Secoiridoid Glucosides from Adina racemosa

Atsuko Itoh, ${ }^{\dagger}$ Kanako Fujii, ${ }^{\dagger}$ Sumie Tomatsu, ${ }^{\dagger}$ Chika Takao, ${ }^{\dagger}$ Takao Tanahashi, ${ }^{*, \dagger}$ Naotaka Nagakura, ${ }^{\dagger}$ and Cheng-Chang Chen ${ }^{\ddagger, \S}$
Kobe Pharmaceutical University, Higashinada-ku, Kobe 658-8558, J apan, and National Kaohsiung Normal University, Kaohsiung, Taiwan, Republic of China

Received May 12, 2003
Six novel secoiridoid glucosides, adinosides A (1), B (2), C (3), D (4), E (5), and grandifloroside 11-methyl ester (6) were isolated, together with 27 known compounds, from the dried leaves, flowers, and twigs of Adina racemosa. The structures of the new compounds were determined by spectroscopic (NMR, MS) and chemical means.

The genus Adina is well known to contain indole alkaloid glucosides, which are closely related to numerous bioactive monoterpenoid indole alkaloids. ${ }^{1}$ On account of our interest in indole alkaloid glucosides and monoterpenoid indole

[^0]alkaloids, we examined the glycosidic fraction of Adina racemosa (Sieb. et Zucc.) Miq. (Rubiaceae). The woody part of the plant has been used for building materials because of its termiticidal constituents. ${ }^{2}$ Previous phytochemical studies reported the isolation of iridoid glucosides, coumarins, and chromones from its wood, bark, and leaves. ${ }^{2-4}$ In this paper we describe the isolation and characterization of six new secoiridoid glucosides.

Results and Discussion

The dried leaves, flowers, and twigs of A. racemosa collected in Taiwan were extracted with MeOH under reflux. The extract was successively partitioned between $\mathrm{H}_{2} \mathrm{O}$ and CHCl_{3} and between $\mathrm{H}_{2} \mathrm{O}$ and $n-\mathrm{BuOH}$. The n - BuOH -soluble fraction was separated by a combination of chromatographic procedures to afford six new compounds, 1-6, along with 27 known compounds: secologanin, ${ }^{3}$ sweroside, ${ }^{3}$ secoxyloganin (7), ${ }^{3}$ loganin, ${ }^{3,4}$ noreugenin-$7-0-\beta$-D-glucoside, ${ }^{4}$ secologanin dimethyl acetal (8), ${ }^{5}$ secologanoside, ${ }^{6}$ secol oganoside 7-methyl ester, ${ }^{7}$ secologanoside dimethyl ester (9), ${ }^{6}$ secol oganic acid (10), ${ }^{8}$ grandifloroside (11), ${ }^{9}$ vogeloside (12), ${ }^{10}$ epi-vogel oside (13), ${ }^{10} 8$-epiloganin, ${ }^{11}$ vincosamide, ${ }^{12}$ strictosamide, ${ }^{12}$ 1-O-feruloyl- β-glucose, ${ }^{13}$ (6S,9R)-roseoside, ${ }^{14}$ kaempferol, ${ }^{15}$ quercetin, ${ }^{15}$ trifolin, ${ }^{16}$ hyperin, ${ }^{15}$ chlorogenic acid, ${ }^{17}$ methyl chlorogenate, ${ }^{17}$ ethyl chlorogenate, ${ }^{18}$ butyl chlorogenate, ${ }^{19}$ and quinovic acid 3-O-β-d-quinovopyranosyl-28-O- β-d-glucopyranoside. ${ }^{20}$ The last 22 compounds were isolated for the first time from this species. The structures of the six new glucosides $\mathbf{1}-\mathbf{6}$ were determined as follows.

Adinoside A (1) was isolated as an amorphous powder. Its molecular formula was deduced as $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{11}$ by HRSIMS. It showed a UV maximum at 235 nm and IR bands at $3373,1709,1636$, and $1074 \mathrm{~cm}^{-1}$. Its ${ }^{1} \mathrm{H}$ NMR spectrum exhibited signals for an olefinic proton at $\delta 7.77$ (s), two
carbomethoxyl groups at $\delta 3.58$ and 3.63 (each s), terminal vinyl protons at $\delta 5.13$ (dd, J = 10.5 and 1.5 Hz), 5.23 (brd, $\mathrm{J}=17.0 \mathrm{~Hz}$), and 5.86 (ddd, J $=17.0,10.5$, and 8.0 Hz), and two acetal protons at $\delta 5.44(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz})$ and 5.91 ($\mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}$). These spectral features were closely similar to those of secologanoside dimethyl ester (9) ${ }^{6}$ except for the presence of the signals for trans olefinic protons at $\delta 5.62$ (dd, $\mathrm{J}=15.5$ and 7.0 Hz) and 5.76 (dt, J $=15.5$ and 7.0 Hz) and two olefinic carbons at $\delta 133.6$ and 126.5. The double bond was situated between C-6 and C-7 in the secoiridoid skeleton by HMBC correlations between an olefinic proton signal [$\delta 5.62(\mathrm{H}-6)$] and $\mathrm{C}-4(\delta 109.5)$, between H-5 ($\delta 3.62$) and an ol efinic carbon signal [$\delta 133.6$ (C-6)], and between H-9 ($\delta 2.72$) and an olefinic carbon signal [$\delta 133.6$ (C-6)]. Furthermore, the HMBC experiments demonstrated correlations between the methoxyl signal ($\delta 3.58$) and the carbonyl carbon signal [$\delta 174.0$ (C$\left.1^{\prime \prime}\right)$] and between methylene signals [$\delta 3.04$ and $3.08\left(\mathrm{H}_{2^{-}}\right.$ $\left.\left.2^{\prime \prime}\right)\right]$ and the carbonyl carbon signal [$\left.\delta 174.0\left(\mathrm{C}-1^{\prime \prime}\right)\right]$ and olefinic carbon signals [$\delta 126.5$ (C-7) and 133.6 (C-6)], formulating the substituent at C-7 as a methoxycarbonyl methyl group. Thus, adinoside A was elucidated to be as shown in formula 1.

Adinoside B (2) and adinoside C (3) revealed the same molecular formula, $\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{O}_{11}$. Both compounds showed closely similar UV and IR spectral features. Their ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were similar to those of secologanin dimethyl acetal (8) ${ }^{5}$ except that each compound showed signals for a secondary methyl group [2: $\delta 1.15$ (d, J = 6.0 $\left.\mathrm{Hz}, \mathrm{H}_{3}-4^{\prime \prime}\right)$; 3: $\delta 1.17\left(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}, \mathrm{H}_{3}-4^{\prime \prime}\right)$], an oxymethine group [2: $\delta 3.69$ (m, H-3"); 3: $\delta 3.73$ (dqd, J = 11.0, 6.0, $\left.2.5 \mathrm{~Hz}, \mathrm{H}-3^{\prime \prime}\right)$], a methylene group [2: $\delta 1.44$ and $1.54\left(\mathrm{H}_{2^{-}}\right.$ 2"); 3: $\delta 1.45$ and $1.55\left(\mathrm{H}_{2}-2^{\prime \prime}\right)$], and an oxymethylene group [2: $\delta 3.71$ and $4.00\left(\mathrm{H}_{2}-1^{\prime \prime}\right) ; 3: \delta 3.69$ and $3.99\left(\mathrm{H}_{2}-1^{\prime \prime}\right)$] instead of signals for two methoxyl groups in secologanin dimethyl acetal (8). The COSY spectra of $\mathbf{2}$ and $\mathbf{3}$ suggested that these signals were due to a 1,3-butanediol unit. The HMBC correlations from $\mathrm{H}_{2}-1^{\prime \prime}$ to $\mathrm{C}-7$, from $\mathrm{H}-7$ to $\mathrm{C}-1^{\prime \prime}$, and from $\mathrm{H}-7$ to $\mathrm{C}-\mathrm{3}^{\prime \prime}$ showed that 2 and $\mathbf{3}$ were two isomeric acetals formed from secologanin and 1,3-butanediol. The NOESY correlation between $\mathrm{H}-7$ and $\mathrm{H}-3^{\prime \prime}$ and a large coupling constant between $\mathrm{H}-2^{\prime \prime}$ and $\mathrm{H}-3^{\prime \prime}(\mathrm{J}=11.0$ Hz) demonstrated cis diaxial orientation of H-7 and H-3" in each compound. Finally, the absolute stereochemistry was confirmed by the preparation of $\mathbf{2}$ and $\mathbf{3}$. Secologanin tetraacetate was condensed with (S)-1,3-butanediol ${ }^{21}$ in the presence of p-toluenesulfonic acid in benzene, and subsequent deacetylation afforded a glucoside, which was identified with 2. In the same manner, glucoside $\mathbf{3}$ was prepared from secologanin tetraacetate and (R)-1,3-butanediol. ${ }^{21}$ Accordingly, adinosides B and C were characterized as $\mathbf{2}$ and 3, respectively. Similar acetal derivatives of secologanin have recently been isolated from Gentiana verna ${ }^{22}$ and Lonicera japonica. ${ }^{23}$

Adinoside D (4) was also obtained as an amorphous powder. The HRSIMS analysis established its molecular formula as $\mathrm{C}_{33} \mathrm{H}_{44} \mathrm{O}_{20}$. Its ${ }^{1} \mathrm{H}$ NMR spectrum revealed two olefinic proton signals for $\mathrm{H}-3$, signals for two sets of terminal vinyl groups, two acetal proton signals for $\mathrm{H}-1$, and signals for two sets of β-glucopyranosyl units, indicating the presence of two secoiridoid glucoside units in the molecule. HMBC and COSY experiments allowed us to depict two units as secoxyloganin (7) ${ }^{3}$ (part a) and secologanic acid (10) ${ }^{8}$ (part b). The attachment of C-6'a of the secoxyloganin unit to $\mathrm{C}-7 \mathrm{~b}$ of the secol oganic acid unit was revealed by HMBC correlations between H_{2} - $\mathbf{6}^{\prime}$ a ($\delta 3.97$ and 4.03) and $\mathrm{C}-7 \mathrm{~b}$ ($\delta 102.0$) and between $\mathrm{H}-7 \mathrm{~b}(\delta 5.55)$ and

C-6'a (δ 68.6). The S-configuration at C-7b of the secologanic acid unit was confirmed by the coupling constant between $\mathrm{H}_{2}-6 \mathrm{~b}$ and $\mathrm{H}-7 \mathrm{~b}\left(\mathrm{~J}_{6 \mathrm{ba}, 7 \mathrm{~b}}=2.5 \mathrm{~Hz}, \mathrm{~J}_{6 \mathrm{~b} \beta, 7 \mathrm{~b}}=1.5 \mathrm{~Hz}\right)$ and comparative studies of the chemical shifts of $\mathrm{C}-5 \mathrm{~b}$, $\mathrm{C}-6 \mathrm{~b}$, and $\mathrm{C}-7 \mathrm{~b}$ with those of vogeloside (12) and epivogel oside (13). ${ }^{10}$ Accordingly, the structure of adinoside D was determined to be 4 .

Adinoside E (5) was isolated as an amorphous powder and had the same molecular formula as 4. Compound 5 showed spectral data closely similar to those of $\mathbf{4}$. Significant differences were the ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ coupling constants between $\mathrm{H}_{2}-6 \mathrm{~b}$ and $\mathrm{H}-7 \mathrm{~b}\left(\mathrm{~J}_{6 \mathrm{ba}, 7 \mathrm{~b}}=9.5 \mathrm{~Hz}, \mathrm{~J}_{6 \mathrm{~b} \beta, 7 \mathrm{~b}}=2.5 \mathrm{~Hz}\right)$ and the chemical shifts of $\mathrm{C}-5 \mathrm{~b}, \mathrm{C}-6 \mathrm{~b}$, and $\mathrm{C}-7 \mathrm{~b}$, which were comparable to those of vogeloside (12). ${ }^{10}$ Therefore, adinoside E was a $\mathrm{C}-7 \mathrm{~b}$ epimer of adinoside D as shown in formula 5.

Compound 6 was obtained as an amorphous powder, $[\alpha]_{D}$ $-94^{\circ}, \mathrm{C}_{26} \mathrm{H}_{32} \mathrm{O}_{13}$. Its ${ }^{1} \mathrm{H}$ NMR spectrum showed a doublet for an ol efinic proton [$\delta 7.49(\mathrm{~J}=0.5 \mathrm{~Hz})$], signals for a terminal vinyl group ($\delta 5.27-5.80$), a singlet for a carbomethoxyl group ($\delta 3.68$), signals for a β-glucopyranosyl moiety (δ 3.19-4.70), and signals for an acylated oxymethylene group ($\delta 4.17$ and 4.23), which were correlated to $\mathrm{H}_{2}-6$ in the COSY spectrum, suggesting a 7-O-acylated secol oganol unit. Further ${ }^{1} \mathrm{H}$ NMR signals for an AMX spin system in the aromatic proton region [$\delta 6.78$ ($\mathrm{d}, \mathrm{J}=8.0$ $\mathrm{Hz}), 6.94(\mathrm{dd}, \mathrm{J}=8.0,2.0 \mathrm{~Hz}$), and $7.03(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz})$] and for trans ol efinic protons [$\delta 6.22$ and 7.53 (each d, J = 16.0 Hz)], together with a fragment ion peak at $\mathrm{m} / \mathrm{z} 179$ in its SIMS, showed the presence of a trans-caffeoyl moiety in 6. These spectral data indicated 6 to be 7-O-transcaffeoylsecologanol. This assumption was supported by HMBC correlations between $\mathrm{H}_{2}-7$ ($\delta 4.17$ and 4.23) and the carbonyl carbon (δ 169.2) and comparison of its NMR spectral data with those of grandifloroside (11). ${ }^{9}$ Accordingly, compound 6 was determined to be grandifloroside 11-methyl ester.

Experimental Section

General Experimental Procedures. UV spectra were recorded on a Shimadzu UV-240 spectrophotometer and IR spectra on a Shimadzu FTIR-8200 spectrophotometer. Optical rotations were measured on a J asco DIP-370 digital polarimeter. ${ }^{1} \mathrm{H}$ (500 or 300 MHz) and ${ }^{13} \mathrm{C}(125 \mathrm{MHz})$ NMR spectra were recorded on Varian VXR-500 or Varian Gemini-300 spectrometers with TMS as an internal standard. MS and HRMS were obtained with a Hitachi M-4100 mass spectrometer. Glycerol or 3-nitrobenzyl alcohol was used as the matrix for SIMS and HRSIMS. MPLC was carried out with Wakogel LP-40 C18. TLC was performed on precoated Kiesel gel 60F 254 plates (Merck).

Plant Material. The leaves, flowers, and twigs of Adina racemosa (Sieb. et Zucc.) Miq. were collected in Heng-Chun Tropical Botanical Garden, Taiwan, in May 1997. A voucher specimen (KPFY-972) is deposited in the laboratory of K obe Pharmaceutical University.

Extraction and Isolation. Dried leaves, flowers, and twigs $(1.27 \mathrm{~kg})$ of A. racemosa were extracted with hot MeOH , the extracts were concentrated in vacuo, and the resulting residue (380 g) was resuspended in $\mathrm{H}_{2} \mathrm{O}$ and extracted successively with CHCl_{3} and $\mathrm{n}-\mathrm{BuOH}$. A part (83.0 g) of the residue (156.8 g) from the $\mathrm{n}-\mathrm{BuOH}$ layer was fractionated over a silica gel column. Elution with $\mathrm{CHCl}_{3}-\mathrm{MeOH}$ mixtures of the indicated MeOH content gave 17 fractions: $1(7 \%, 1.33 \mathrm{~g}), 2(7 \%, 14.57$ $\mathrm{g}), 3(7 \%, 5.83 \mathrm{~g}), 4(7 \%, 1.85 \mathrm{~g}), 5(7 \%, 0.99 \mathrm{~g}), 6(7 \%, 2.62 \mathrm{~g})$, 7 (7\%, 1.42 g$), 8(7 \%, 1.04 \mathrm{~g}), 9(7 \%, 4.25 \mathrm{~g}), 10(7 \%, 3.17 \mathrm{~g})$, 11 (7\%, 2.62 g$), 12(10 \%, 0.42 \mathrm{~g}), 13$ ($10 \%, 0.88 \mathrm{~g}$), 14 (10%, $4.03 \mathrm{~g}), 15(10 \%, 0.77 \mathrm{~g}), 16(10 \%, 2.16 \mathrm{~g})$, and 17 ($12 \%, 2.94$ g). Fraction 1 was purified by reversed-phase MPLC with $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}(1: 4-2: 3)$ and preparative HPLC (μ Bondasphere

Table 1. ${ }^{1} \mathrm{H}$ NMR Spectral Data of 2-5 in $\mathrm{CD}_{3} \mathrm{OD}$ at 500 MHz

	H	2						3				
	1		5.53	d		(6.5)		5.51	d		(5.5)	
	3		7.42	d		(0.5)		7.41	d		(1.0)	
	5		2.98	brq		(6.5)		2.98	brq		(6.5)	
	6		1.73	ddd		(13.5, 6.5, 4.5)		1.69	ddd		(13.5,	7.5, 4.5)
	6		1.88	ddd		(13.5, 7.5, 6.0)		1.97	dt		(13.5,	6.5)
	7		4.64	dd		(6.0, 4.5)		4.63	dd		(6.5,	4.5)
	8		5.75	ddd		(17.5, 10.5, 8.5		5.74	ddd		(17.5,	10.5, 8.5)
	9		2.64	dt		(8.5, 6.5)		2.66	dt			5.5)
	10		5.24	brd		(10.5)		5.25	brd		(10.5)	
	10		5.28	brd		(17.5)		5.29	brd		(17.5)	
	OMe		3.69	s				3.69	S			
	1		4.69	d		(7.5)		4.67	d		(8.0)	
	$2 '$		3.19	dd		(9.0, 7.5)		3.19	dd		(9.0,	8.0)
	$3 '$		3.36	t		(9.0)		3.36	t		(9.0)	
	4^{\prime}		3.28	t		(9.0)		3.27	t		(9.0)	
	$5{ }^{\prime}$		3.31	m				3.31	ddd		(9.0,	5.5, 2.0)
	6 '		3.67	dd		(12.0, 5.5)		3.66	dd		(11.5,	5.5)
	6 '		3.89	dd		12.0, 2.0)		3.89	dd		(11.5,	2.0)
	1 '		3.71	ddd		13.0, 11.0, 2.5		3.69	ddd		(13.0,	11.0, 2.5)
	1 "		4.00	ddd		(11.0, 5.0, 1.5)		3.99	ddd		(11.0,	5.0, 1.5)
	$2 \prime$		1.44	dtd		(13.0, 2.5, 1.5)		1.45	dtd		(13.0,	2.5, 1.5)
	2"		1.54	tdd		13.0, 11.0, 5.0		1.55	tdd		(13.0,	11.0, 5.0)
	3"		3.69	m				3.73	dqd		(11.0,	6.0, 2.5)
	$4^{\prime \prime}$		1.15	d		(6.0)		1.17	d		(6.0)	
	4						5					
H	part a			part b			part a			part b		
1	5.39	d	(4.0)	5.56	d	(1.5)	5.35	d	(4.0)	5.56	d	(1.5)
3	7.45	d	(2.0)	7.61	d	(2.5)	7.45	d	(2.0)	7.59	d	(2.5)
5	3.27-3.40	m		3.43	m		3.28-3.33	m		3.10	dddd	$\begin{aligned} & (13.5,5.5,4.0, \\ & 2.5) \end{aligned}$
6	2.23	dd	(16.5, 9.0)	1.71	td	(13.5, 2.5)	2.19	dd	(16.0, 9.5)	1.52	td	(13.5, 9.5)
6	2.86	dd	(16.5, 5.0)	1.92	ddd	$\begin{gathered} \text { (13.5, 5.0, } \\ 1.5) \end{gathered}$	2.91	dd	(16.0, 5.0)	2.02	ddd	(13.5, 4.0, 2.5)
7				5.55	dd	$(2.5,1.5)$				5.51	dd	$(9.5,2.5)$
8	5.64	ddd	$\begin{aligned} & (17.0,10.5, \\ & 9.0) \end{aligned}$	5.53	ddd	$\begin{gathered} (17.0,10.5 \\ 9.5) \end{gathered}$		ddd	$\begin{aligned} & (17.0,10.5, \\ & 9.5) \end{aligned}$	5.51	ddd	$\begin{aligned} & (17.0,10.5, \\ & 9.5) \end{aligned}$
9	2.81	ddd	(9.0, 5.5, 4.0)	2.66	ddd	$\begin{gathered} (9.5,5.5, \\ 1.5) \end{gathered}$	2.84	ddd	(9.5, 5.5, 4.0)	2.66	ddd	(9.5, 5.5, 1.5)
10	$5.23{ }^{\text {a }}$	dd	(10.5, 1.5)	$5.27{ }^{\text {a }}$	dd	$(10.5,1.5)$	$5.24{ }^{\text {d }}$	dd	(10.5, 2.0)	$5.28{ }^{\text {d }}$	dd	(10.5, 2.0)
10	$5.28{ }^{\text {b }}$	dd	(17.0, 1.5)	$5.31{ }^{\text {b }}$	dd	(17.0, 1.5)	5.30	dd	(17.0, 2.0)	5.30	dd	(17.0, 2.0)
OMe	3.68	S					3.68	S				
$1 '$	4.65	d	(8.0)	4.70	d	(8.0)	4.64	d	(8.0)	4.67	d	(8.0)
2	$3.19{ }^{\text {c }}$	dd	(9.0, 8.0)	$3.23{ }^{\text {c }}$	dd	(9.0, 8.0)	$3.20{ }^{\text {e }}$	dd	(9.0, 8.0)	$3.21{ }^{\text {e }}$	dd	(9.0, 8.0)
$3 '$	3.27-3.40	m		3.27-3.40	m		3.36	t	(9.0)	3.36	,	(9.0)
4^{\prime}	3.27-3.40	m		3.27-3.40	m		3.27	brt	(9.5)	3.27	brt	(9.5)
5'	3.43	m		3.27-3.40	m		3.49	ddd	(9.5, 7.0, 2.0)	3.28-3.33	m	
6	3.97	dd	(12.0, 2.0)	3.67	dd	(12.0, 5.5)	3.78	dd	(11.5, 7.0)	3.66	dd	(12.0, 6.0)
6^{\prime}	4.03	dd	(12.0, 4.0)	3.89	dd	(12.0, 2.0)	4.26	dd	(11.5, 2.0)	3.89	dd	(12.0, 2.0)

[^1]$5 \mu \mathrm{C} 18-100 \AA, \mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}, 11: 9,1: 1,9: 11$) to afford 1 (4.9 $\mathrm{mg}), \mathbf{2}(20.5 \mathrm{mg}), \mathbf{3}(24.3 \mathrm{mg}), 8(3.8 \mathrm{mg})$, secol oganin (9.0 mg), methyl chlorogenate (61.3 mg), butyl chlorogenate (48.3 mg), and ethyl chlorogenate (7.9 mg). In the same way, fractions 3-8 and 10-13 were purified by a combination of silica gel $\mathrm{CC}\left(\mathrm{CHCl}_{3}-\mathrm{MeOH}, 19: 1-17: 3\right)$, reversed-phase MPLC with $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$ (3:17-4:1), preparative HPLC (μ Bondasphere 5μ C18-100 $\AA, \mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}, 3: 7-7: 3$), and preparative TLC ($\mathrm{CHCl}_{3}-\mathrm{MeOH}, 7: 3,4: 1 ; \mathrm{AcOEt}-\mathrm{C}_{6} \mathrm{H}_{6}-\mathrm{EtOH}, 4: 1: 1$). Fraction 3 yielded 4 (28.2 mg), 5 (15.3 mg), 6 (12.2 mg), 7 (1752 mg), $10(24.8 \mathrm{mg}), 12(41.4 \mathrm{mg})$, methyl chlorogenate $(82.7 \mathrm{mg})$, chlorogenic acid (811 mg), 1-O-feruloyl- β-glucose (21.8 mg), ($6 \mathrm{~S}, 9 \mathrm{R}$)-roseoside (7.2 mg), and strictosamide (1.6 mg); fraction 4, 7 (480 mg), methyl chlorogenate (55.9 mg), sweroside (58.5 mg), chlorogenic acid (636 mg), trifolin (14.7 mg), and 1-O-feruloyl- β-glucose (13.5 mg); fraction 5, $7(26.3 \mathrm{mg}$), methyl chlorogenate (10.3 mg), sweroside (69.1 mg), chlorogenic acid (455 mg), trifolin (14.9 mg), and vincosamide (6.0 mg); fraction 6, 7 (15.1 mg), $13(10.6 \mathrm{mg}$), methyl chlorogenate (16.1 mg), chlorogenic acid (474 mg), and loganin (86.6 mg); fraction 7, 7 (1.8 mg), $\mathbf{1 1}$ (17.0 mg), methyl chlorogenate (38.3 mg), trifolin $(3.0 \mathrm{mg})$, Ioganin (2.8 mg), hyperin (58.1 mg), and quercetin $(5.4 \mathrm{mg})$; fraction $8, \mathbf{1 1}(14.1 \mathrm{mg})$, methyl chlorogenate (136
mg), chlorogenic acid (162 mg), Ioganin (12.0 mg), hyperin (4.5 mg), and quercetin (15.2 mg); fraction 10, $9(39.7 \mathrm{mg}$), methyl chlorogenate (169 mg), quercetin (31.8 mg), and kaempferol (11.6 mg); fraction 11, 9 (12.6 mg), $10(11.9 \mathrm{mg})$, Ioganin (4.2 mg), noreugenin-7-O- β-D-glucoside (6.3 mg), (6S,9R)-roseoside $(9.3 \mathrm{mg}$), quercetin (14.3 mg), secologanoside 7-methyl ester (30.9 mg), and secol oganoside (10.4 mg); fraction 12, 8-epiloganin (2.0 mg), secologanoside 7-methyl ester (8.9 mg), and quinovic acid 3-O- β-d-quinovopyranosyl-28-O- β-d-glucopyranoside (16.8 mg); and fraction 13, 12 (9.6 mg), noreugenin-7-$\mathrm{O}-\beta$-D-glucoside (1.5 mg), and quinovic acid 3-O- β-D-quino-vopyranosyl-28-O- β-D-glucopyranoside (19.0 mg). Fractions 2 and 9 were not further purified because HPLC analyses showed fraction 2 consisted of chlorogenic acid and secoxyloganin (7) and fraction 9 consisted of methyl chlorogenate.
Adinoside A (1): amorphous powder; $[\alpha]^{26} \mathrm{D}-40^{\circ}$ (c 0.5, MeOH); UV (MeOH) $\lambda_{\text {max }}(\log \epsilon) 235$ (4.07) nm; IR (KBr) $\nu_{\text {max }}$ 3373, 1709, 1636, $1074 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (pyridine- $\mathrm{d}_{5}, 500 \mathrm{MHz}$) $\delta 2.72(1 \mathrm{H}, \mathrm{td}, \mathrm{J}=8.0,5.5 \mathrm{~Hz}, \mathrm{H}-9), 3.04(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=16.5$, $\left.7.0 \mathrm{~Hz}, \mathrm{H}-2^{\prime \prime}\right), 3.08\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=16.5,7.0 \mathrm{~Hz}, \mathrm{H}-2^{\prime \prime}\right), 3.58(3 \mathrm{H}$, s, OMe), 3.62 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.0,5.5 \mathrm{~Hz}, \mathrm{H}-5$), 3.63 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), $3.99\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=8.5,5.5,2.0 \mathrm{~Hz}, \mathrm{H}-5^{\prime}\right), 4.07(1 \mathrm{H}, \mathrm{brt}, \mathrm{J}=$ 8.0 Hz, H-2'), $4.26\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.5 \mathrm{~Hz}, \mathrm{H}-4^{\prime}\right), 4.29(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=$

Table 2. ${ }^{13} \mathrm{C}$ NMR Spectral Data of $\mathbf{1}-\mathbf{6}$ in $\mathrm{CD}_{3} \mathrm{OD}$ at 125 MHz

C	1	2	3	4		5		6
				part a	part b	part a	part b	
1	97.4	97.7	97.7	97.9	98.4	97.9	97.9	97.7
3	154.2	153.3	153.2	153.4	154.3	153.3	154.1	153.6
4	109.5	111.8	111.8	110.5	105.6	110.6	105.1	111.5
5	39.6	30.2	29.7	29.2	22.9	28.8	25.3	31.6
6	133.6	36.1	35.8	36.1	30.3	36.1	31.7	30.2
7	126.5	102.2	102.0	177.3	102.0	177.4	105.2	64.1
8	135.8	135.9	135.9	134.6	133.3	134.6	133.0	135.7
9	46.3	45.4	45.3	45.3	43.5	45.2	43.8	45.4
10	118.9	111.5	119.7	120.5	121.0	120.7 ${ }^{\text {c }}$	$121.2^{\text {c }}$	119.6
11	168.8	169.3	169.3	169.0	167.4	168.9	167.6	169.2
OMe	51.8	51.7	51.7	51.6		51.6		51.8
$1 '$	100.3	100.1	100.1	100.3	100.0	100.2	99.7	100.2
$2 '$	74.7	74.7	74.7	74.5 ${ }^{\text {a }}$	$74.6{ }^{\text {a }}$	74.5 ${ }^{\text {d }}$	$74.6{ }^{\text {d }}$	74.7
3	78.1	78.0	78.1	$77.9^{\text {b }}$	$78.1{ }^{\text {b }}$	$77.8{ }^{\text {e }}$	$78.0{ }^{\text {e }}$	78.0
4^{\prime}	71.6	71.6	71.6	71.0	71.5	71.6	$71.8{ }^{\text {f }}$	71.6
5	78.5	78.4	78.4	76.7	78.4	77.1	78.4	78.4
6	62.8	62.8	62.8	68.6	62.7	70.5	62.7	62.8
1 "	174.0	67.7	67.5					127.7
$2 \prime$	38.3	34.2	34.2					115.1
3 "		74.0	74.2					146.8
$4 \prime$		22.0	22.0					149.6
5 "								116.5
6 "								122.9
OMe	52.4							
α								115.1
β								146.9
CO								169.2

${ }^{\text {a-f }}$ Values with the same superscript are interchangeable.
$\left.8.5 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right), 4.38\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=11.5,5.5 \mathrm{~Hz}, \mathrm{H}-6^{\prime}\right), 4.54(1 \mathrm{H}$, dd, J = 11.5, $2.0 \mathrm{~Hz}, \mathrm{H}-6^{\prime}$), 5.13 ($1 \mathrm{H}, \mathrm{dd}$, J $=10.5,1.5 \mathrm{~Hz}$, $\mathrm{H}-10), 5.23(1 \mathrm{H}$, brd, J $=17.0 \mathrm{~Hz}, \mathrm{H}-10), 5.44(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0$ $\mathrm{Hz}, \mathrm{H}-1^{\prime}$), 5.62 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=15.5,7.0 \mathrm{~Hz}, \mathrm{H}-6$), 5.76 ($1 \mathrm{H}, \mathrm{dt}$, J $=15.5,7.0 \mathrm{~Hz}, \mathrm{H}-7), 5.86(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=17.0,10.5,8.0 \mathrm{~Hz}$, $\mathrm{H}-8), 5.91(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{H}-1), 7.77(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-3)$; ${ }^{13} \mathrm{C}$ NMR, Table 2; HMBC, H-3 to C-11; H-5 to C-6; H-9 to C-6; H-6 to C-4; OMe ($\delta 3.63$) to $\mathrm{H}-11$; $\mathrm{H}-6$ to $\mathrm{C}-7$; $\mathrm{H}_{2}-2^{\prime \prime}$ to $\mathrm{H}-6 ; \mathrm{H}_{2}-2^{\prime \prime}$ to C-7; H_{2}-2" to $\mathrm{C}-\mathbf{1}^{\prime \prime}$; OMe (δ 3.58) to $\mathrm{C}-1^{\prime \prime}$; negative-ion SIMS m/z 443 [M - H] ${ }^{-}$, 281, 179; negative-ion HRSIMS m/z 443.1569 (calcd for $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{O}_{11}, 443.1554$).

Adinoside B (2): amorphous powder; [$\alpha]^{31} \mathrm{D}-111^{\circ}$ (c 0.93, $\mathrm{MeOH}) ;$ UV $(\mathrm{MeOH}) \lambda_{\text {max }}(\log \epsilon) 234$ (4.07) nm; IR (KBr) $\nu_{\text {max }}$ 3422, 1705, $1636 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR, Table 1; ${ }^{13} \mathrm{C}$ NMR, Table 2; NOESY, H-7 and H-3"; HMBC, H-3 to C-11; H-5 to C-7; H-5 to $\mathrm{C}-11 ; \mathrm{H}_{2}-6$ to $\mathrm{C}-7 ; \mathrm{H}-7$ to $\mathrm{C}-1^{\prime \prime} ; \mathrm{H}-7$ to $\mathrm{C}-3^{\prime \prime}$; OMe to $\mathrm{C}-11$; H-1" ($\delta 4.00$) to C-7; H-1" ($\delta 4.00$) to C-3"; $\mathrm{H}_{3}-4^{\prime \prime}$ to $\mathrm{C}-2^{\prime \prime} ; \mathrm{H}_{3}$ $4^{\prime \prime}$ to C-3"; negative-ion SIMS m/z $459[\mathrm{M}-\mathrm{H}]^{-}, 297,183$; negative-ion HRSIMS m/z 459.1887 (calcd for $\mathrm{C}_{21} \mathrm{H}_{31} \mathrm{O}_{11}$, 459.1867).

Adinoside C (3): amorphous powder; [$\alpha]^{23} \mathrm{D}-134^{\circ}$ (c 0.5 , $\mathrm{MeOH})$; UV $(\mathrm{MeOH}) \lambda_{\text {max }}(\log \epsilon) 233$ (4.05) nm; IR (KBr) $v_{\text {max }}$ 3416, 1706, 1636, $1074 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR, Table 1; ${ }^{13} \mathrm{C}$ NMR, Table 2; NOESY, H-7 and H-3"; HMBC, H-3 to C-11; H-5 to $\mathrm{C}-7$; $\mathrm{H}-5$ to $\mathrm{C}-11 ; \mathrm{H}_{2}-6$ to $\mathrm{C}-7$; $\mathrm{H}-7$ to $\mathrm{C}-1^{\prime \prime} ; \mathrm{H}-7$ to $\mathrm{C}-3^{\prime \prime} ; \mathrm{OMe}^{\prime}$ to $\mathrm{C}-11 ; \mathrm{H}_{2}-1^{\prime \prime}$ to $\mathrm{C}-3^{\prime \prime} ; \mathrm{H}-1^{\prime \prime}(\delta 3.99)$ to $\mathrm{C}-7 ; \mathrm{H}_{3}-4^{\prime \prime}$ to $\mathrm{C}-2^{\prime \prime} ; \mathrm{H}_{3^{-}}$ $4^{\prime \prime}$ to C-3"; negative-ion SIMS m/z 459 [M - H] ${ }^{-}, 297,183 ;$ negative-ion HRSIMS m/z 459.1874 (calcd for $\mathrm{C}_{21} \mathrm{H}_{31} \mathrm{O}_{11}$, 459.1867).

Adinoside D (4): amorphous powder; [$\alpha]^{28} \mathrm{D}-137^{\circ}$ (c 1.0, $\mathrm{MeOH}) ;$ UV $(\mathrm{MeOH}) \lambda_{\text {max }}(\log \epsilon) 238(4.24) \mathrm{nm} ; \mathrm{IR}(\mathrm{KBr}) v_{\text {max }}$ 3405, 1701, 1620, $1016 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR, Table 1; ${ }^{13} \mathrm{C}$ NMR, Table 2; HMBC, H-1a to C-1'a; H-3a to C-4a; H-3a to C-5a; H -3a to $\mathrm{C}-11 \mathrm{a} ; \mathrm{H}_{2}$-6a to $\mathrm{C}-5 \mathrm{a}$; H_{2}-6a to C-7a; OMe to C-11a; H_{2}-6'a to C-7b; H-7b to C-6'a; H-3b to C-4b; H-3b to C-5b; H-3b to C-11b; H-1b to C-1'b; negative-ion SIMS m/z $759[\mathrm{M}-\mathrm{H}]^{-}$, 403, 373; negative-ion HRSIMS m/z 759.2362 (calcd for $\mathrm{C}_{33} \mathrm{H}_{43} \mathrm{O}_{20}, 759.2349$).

Adinoside E (5): amorphous powder; $[\alpha]^{28} \mathrm{D}-181^{\circ}$ (c 1.0, $\mathrm{MeOH}) ; \mathrm{UV}(\mathrm{MeOH}) \lambda_{\text {max }}(\log \epsilon) 237(4.23) \mathrm{nm} ; \mathrm{IR}(\mathrm{KBr}) \nu_{\text {max }}$ 3405, 1697, 1624, $1074 \mathrm{~cm}^{-1}$; ${ }^{13} \mathrm{H}$ NMR, Table 1; ${ }^{13} \mathrm{C}$ NMR,

Table 2; HMBC, H-1a to C-1'a; H-3a to C-4a; H-3a to C-5a; H -3a to $\mathrm{C}-11 \mathrm{a} ; \mathrm{H}_{2}$-6a to $\mathrm{C}-7 \mathrm{a} ; \mathrm{H}_{2}$-6a to $\mathrm{C}-5 \mathrm{a}$; OMe to $\mathrm{C}-11 \mathrm{a}$; H_{2} - $\mathbf{6}^{\prime}$ a to $\mathrm{C}-7 \mathrm{~b}$; $\mathrm{H}-7 \mathrm{~b}$ to $\mathrm{C}-$ 6'a; $^{\prime} \mathrm{H}-1 \mathrm{~b}$ to $\mathrm{C}-1$ 'b; $\mathrm{H}-3 \mathrm{~b}$ to $\mathrm{C}-4 \mathrm{~b}$; $\mathrm{H}-3 \mathrm{~b}$ to C-5b; H-3b to C-11b; negativeion SIMS m/z $759[\mathrm{M} \mathrm{-} \mathrm{H}]^{-}$, 403, 373; negative-ion HRSIMS m/z 759.2357 (calcd for $\mathrm{C}_{33} \mathrm{H}_{43} \mathrm{O}_{20}, 759.2349$).

Grandifloroside 11-methyl ester (6): amorphous powder; $[\alpha]^{26} \mathrm{D}-94^{\circ}(\mathrm{c} 0.66, \mathrm{MeOH})$; UV $(\mathrm{MeOH}) \lambda_{\text {max }}(\log \epsilon) 222(4.26)$, 234 (4.25), 302 (sh) (4.07), 328 (4.17) nm; IR (KBr) $\nu_{\text {max }} 3394$, 1693, 1632, 1609, 1516, 1443, $1074 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CD}_{3} \mathrm{OD}$, $500 \mathrm{MHz}) \delta 1.87(1 \mathrm{H}, \mathrm{td}, \mathrm{J}=13.5,7.0 \mathrm{~Hz}, \mathrm{H}-6), 2.06(1 \mathrm{H}, \mathrm{td}$, $\mathrm{J}=13.5,7.0 \mathrm{~Hz}, \mathrm{H}-6), 2.67(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=8.5,6.5 \mathrm{~Hz}, \mathrm{H}-9), 2.93$ (1 H, brq, J $=6.5 \mathrm{~Hz}, \mathrm{H}-5$), $3.19\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=9.0,8.0 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right)$, $3.26\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=9.0 \mathrm{~Hz}, \mathrm{H}-4^{\prime}\right), 3.32(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=9.0,6.0,2.0$ $\left.\mathrm{Hz}, \mathrm{H}-5^{\prime}\right), 3.36\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=9.0 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right), 3.66(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=$ $\left.12.0,6.0 \mathrm{~Hz}, \mathrm{H}-6^{\prime}\right), 3.68(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 3.90 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=12.0$, $\left.2.0 \mathrm{~Hz}, \mathrm{H}-6^{\prime}\right), 4.17$ (1H, dt, J = 11.0, $\left.7.0 \mathrm{~Hz}, \mathrm{H}-7\right), 4.23$ (1 H , $\mathrm{dt}, \mathrm{J}=11.0,7.0 \mathrm{~Hz}, \mathrm{H}-7), 4.70\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{H}^{\prime} \mathrm{l}^{\prime}\right), 5.27$ ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=10.5,1.5 \mathrm{~Hz}, \mathrm{H}-10$), 5.32 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=17.0,1.5$ $\mathrm{Hz}, \mathrm{H}-10), 5.57(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}, \mathrm{H}-1), 5.80(1 \mathrm{H}$, ddd, $\mathrm{J}=$ $17.0,10.5,8.5 \mathrm{~Hz}, \mathrm{H}-8), 6.22(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=16.0 \mathrm{~Hz}, \mathrm{H}-\alpha$), 6.78 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{H}-5^{\prime \prime}$), 6.94 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.0,2.0 \mathrm{~Hz}, \mathrm{H}-6^{\prime \prime}$), $7.03\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.0 \mathrm{~Hz}, \mathrm{H}-2^{\prime \prime}\right), 7.49(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=0.5 \mathrm{~Hz}, \mathrm{H}-3)$, 7.53 (1H, d, J $=16.0 \mathrm{~Hz}, \mathrm{H}-\beta$); ${ }^{13} \mathrm{C}$ NMR, Table 2; HMBC, H-3 to $\mathrm{C}-11 ; \mathrm{H}-5$ to $\mathrm{C}-6 ; \mathrm{H}-5$ to $\mathrm{C}-7$; $\mathrm{H}-5$ to $\mathrm{C}-11 ; \mathrm{OMe}$ to $\mathrm{C}-11$; $\mathrm{H}_{2}-6$ to $\mathrm{C}-7 ; \mathrm{H}_{2}-7$ to $\mathrm{CO} ; \mathrm{H}-\alpha$ to $\mathrm{CO} ; \mathrm{H}-\alpha$ to $\mathrm{C}-1^{\prime \prime} ; \mathrm{H}-\beta$ to CO ; $\mathrm{H}-\beta$ to $\mathrm{C}-1^{\prime \prime} ; \mathrm{H}-\beta$ to $\mathrm{C}-2^{\prime \prime} ; \mathrm{H}-\beta$ to $\mathrm{C}-6^{\prime \prime} ;$ negative-ion SIMS m $/ \mathrm{z}$ $551\left[\mathrm{M}-\mathrm{H}^{-}\right.$, 179; negative-ion HRSI MS m/z 551.1766 (calcd for $\mathrm{C}_{26} \mathrm{H}_{31} \mathrm{O}_{13}, 551.1766$).

Preparation of 2 and 3. To a solution of secologanin tetraacetate ($74.4 \mathrm{mg}, 0.13 \mathrm{mmol}$) and (S)-1,3-butanediol ${ }^{21}$ ($24.1 \mathrm{mg}, 0.27 \mathrm{mmol}$) in dry benzene (1.0 mL) was added p-tol uenesulfonic acid (1.9 mg), and the whole was stirred for 45 min under reflux. After addition of triethylamine ($3 \mu \mathrm{~L}$) and dilution with $\mathrm{H}_{2} \mathrm{O}$, the mixture was extracted with CHCl_{3}. Washed and dried organic layers were concentrated in vacuo to leave a residue (88.6 mg), which was subjected to preparative TLC (benzene-acetone, 7:3), giving rise to $\mathbf{2 a}$ (72.1 mg , $85.8 \%):[\alpha]^{25} \mathrm{D}-98^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right) ; \mathrm{UV}(\mathrm{MeOH}) \lambda_{\text {max }}(\log \epsilon) 232$ (3.99) nm; IR (KBr) $v_{\max } 1759,1713,1634 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.19\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.0 \mathrm{~Hz}, \mathrm{H}_{3}-4^{\prime \prime}\right), 1.40(1 \mathrm{H}$, brd, J $\left.=13.0 \mathrm{~Hz}, \mathrm{H}-2^{\prime \prime}\right), 1.62\left(1 \mathrm{H}, \mathrm{qd}, \mathrm{J}=12.0,5.0 \mathrm{~Hz}, \mathrm{H}-2^{\prime \prime}\right)$, 1.75 (1 H , ddd, J $=13.5,7.0,5.0 \mathrm{~Hz}, \mathrm{H}-6), 1.89(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=$ $13.5,6.0 \mathrm{~Hz}, \mathrm{H}-6), 1.96,2.00,2.03,2.10(12 \mathrm{H}$, each $\mathrm{s}, 4 \times \mathrm{Ac})$, $2.67(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=8.5,5.5 \mathrm{~Hz}, \mathrm{H}-9), 2.91(1 \mathrm{H}, \mathrm{brq}, \mathrm{J}=6.0 \mathrm{~Hz}$, H-5), 3.63-3.76 (3H, m, H-5', H-1", H-3"), 3.70 (3H, s, COOMe), 4.05 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=11.5,4.5 \mathrm{~Hz}, \mathrm{H}-1^{\prime \prime}$), $4.12(1 \mathrm{H}, \mathrm{dd}$, $\left.\mathrm{J}=12.0,2.0 \mathrm{~Hz}, \mathrm{H}-6^{\prime}\right), 4.29\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=12.0,4.5 \mathrm{~Hz}, \mathrm{H}-6^{\prime}\right)$, $4.61(1 \mathrm{H}, \mathrm{brt}, \mathrm{J}=5.5 \mathrm{~Hz}, \mathrm{H}-7), 4.90\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right)$, $5.02\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=9.0,8.0 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right), 5.10(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=9.0 \mathrm{~Hz}$, $\left.\mathrm{H}-4^{\prime}\right), 5.22\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=9.0 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right), 5.22-5.30\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-10\right)$, $5.32(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.5 \mathrm{~Hz}, \mathrm{H}-1), 5.64(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=18.0,9.5,8.5$ Hz, H-8), 7.34 (1H , s, H-3); EIMS m/z $628[\mathrm{M}]^{+}, 627,331,169$, 43; HREIMS m/z 628.2351 (calcd for $\mathrm{C}_{29} \mathrm{H}_{40} \mathrm{O}_{15}, 628.2369$). A solution of $\mathbf{2 a}(69.3 \mathrm{mg})$ in dry $\mathrm{MeOH}(2.7 \mathrm{~mL})$ and 0.1 N $\mathrm{NaOMe}(0.3 \mathrm{~mL})$ was stirred for 40 min at room temperature. The reaction mixture was neutralized with Amberlite IR-120 and evaporated in vacuo. The resulting residue (50.6 mg) was purified by preparative $\mathrm{TLC}\left(\mathrm{CHCl}_{3}-\mathrm{MeOH}, 8: 2\right)$ and preparative HPLC ($\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}, 1: 1$) to afford 2 ($32.7 \mathrm{mg}, 64.4 \%$): $[\alpha]^{30_{D}}-128^{\circ}$ (c 1.0, MeOH); SIMS m/z 459 [M - H] ${ }^{-}$, 297. UV, IR, and ${ }^{1} \mathrm{H}$ NMR spectral data were identical to those of $\mathbf{2}$ from A. racemosa.

In a similar manner, condensation of secologanin tetraacetate ($78.4 \mathrm{mg}, 0.14 \mathrm{mmol}$) and (R)-1,3-butanediol ${ }^{21}(25.4 \mathrm{mg}$, 0.28 mmol) gave 3 a ($77.8 \mathrm{mg}, 87.9 \%$): $[\alpha]^{22} \mathrm{D}-94^{\circ}$ (c 1.0, $\left.\mathrm{CHCl}_{3}\right) ;$ UV $(\mathrm{MeOH}) \lambda_{\text {max }}(\log \epsilon) 231(3.99) \mathrm{nm} ; \mathrm{IR}(\mathrm{KBr}) v_{\text {max }}$ $1759,1713,1634 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (CDCl $\left.3,300 \mathrm{MHz}\right) \delta 1.20(3 \mathrm{H}$, d, J $\left.=6.0 \mathrm{~Hz}, \mathrm{H}_{3}-4^{\prime \prime}\right), 1.39\left(1 \mathrm{H}, \mathrm{brd}, \mathrm{J}=13.0 \mathrm{~Hz}, \mathrm{H}-2^{\prime \prime}\right), 1.60$ (1 H , ddd, J $=12.5,11.0,5.0 \mathrm{~Hz}, \mathrm{H}-2^{\prime \prime}$), $1.70(1 \mathrm{H}$, ddd, J = $13.5,8.0,4.5 \mathrm{~Hz}, \mathrm{H}-6$), 1.94, 2.00, 2.03, 2.10 (12 H , each s, $4 \times$ Ac), 1.98 ($1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=13.5,6.5,5.5 \mathrm{~Hz}, \mathrm{H}-6$), 2.69 ($1 \mathrm{H}, \mathrm{dt}, \mathrm{J}$ $=8.5,5.5 \mathrm{~Hz}, \mathrm{H}-9), 2.91(1 \mathrm{H}, \mathrm{dtd}, \mathrm{J}=8.0,5.5,1.5 \mathrm{~Hz}, \mathrm{H}-5)$, 3.65 (1 H , ddd, J = 12.0, 11.5, $2.5 \mathrm{~Hz}, \mathrm{H}-1^{\prime \prime}$), 3.70 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3^{\prime \prime}$), 3.73 (1 H, ddd, J $\left.=9.5,4.5,2.5 \mathrm{~Hz}, \mathrm{H}-5^{\prime \prime}\right), 4.04(1 \mathrm{H}$, ddd, J =
11.5, 5.0, 1.0 Hz, H-1"), 4.13 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=12.5,2.5 \mathrm{~Hz}, \mathrm{H}-6^{\prime}$), 4.30 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=12.5,4.5 \mathrm{~Hz}, \mathrm{H}-6^{\prime}$), 4.61 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=6.5,4.5$ $\mathrm{Hz}, \mathrm{H}-7), 4.90\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{H}^{\prime} \mathrm{l}^{\prime}\right), 5.01(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=9.5$, $\left.8.0 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right), 5.10\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=9.5 \mathrm{~Hz}, \mathrm{H}-4^{\prime}\right), 5.22(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=$ $\left.9.5 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right), 5.23-5.31\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-10\right), 5.64(1 \mathrm{H}$, ddd, J = 17.0, 10.0, $8.5 \mathrm{~Hz}, \mathrm{H}-8$), $7.31(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.5 \mathrm{~Hz}, \mathrm{H}-3)$; EIMS m/z 628 [M] ${ }^{+}$, 627, 331, 169, 43; HREIMS m/z 628.2345 (calcd for $\mathrm{C}_{29} \mathrm{H}_{40} \mathrm{O}_{15}, 628.2369$). Methanolysis of 3 a ($75.9 \mathrm{mg}, 0.12$ $\mathrm{mmol})$ yielded $3(40.2 \mathrm{mg}, 72.3 \%):[\alpha]^{30}{ }_{\mathrm{D}}-123^{\circ}(\mathrm{c} 1.0, \mathrm{MeOH})$; SIMS m/z $459\left[\mathrm{M}-\mathrm{H}^{-}\right.$, 297. UV, IR, and ${ }^{1} \mathrm{H}$ NMR spectral data were identical to those of the isolated compound.

Acknowledgment. Our thanks go to Dr. M. Sugiura (K obe Pharmaceutical University) for NMR spectra and to Dr. K. Saiki (K obePharmaceutical University) for MS measurements. This research was financially supported by K obe Pharmaceutical University Collaboration Fund.

References and Notes

(1) Hemingway, S. R.; Phillipson, J. D. In Indole and Biogenetically Related Alkaloids; Phillipson, J. D., Zenk, M. H., Eds.; Academic Press: New York, 1980; Chapter 4.
(2) Yaga, S. Mokuzai Gakkaishi 1977, 23, 594-600; Chem. Abstr. 1978, 88, 34530 e .
(3) Inouye, H.; Uobe, K.; Hirai, M.; Masuda, Y.; Hashimoto, K. J. Chromatogr. 1976, 118, 201-216
(4) Aimi, N.; K ohmoto, T.; H onma, M.; Sakai, S.-i.; Haginiwa, J Shoyakugaku' Zasshi 1980, 34, 151-154; Chem. Abstr. 1981, 94, 2006 w.
(5) Kawai, H.; Kuroyanagi, M.; Ueno, A. Chem. Pharm. Bull. 1988, 36, 3664-3666.
(6) Calis, I.; Sticher, O. Phytochemistry 1984, 23, 2539-2540.
(7) Sugiyama, M.; Machida, K.; Matsuda, N.; Kikuchi, M. Phytochemistry 1993, 34, 1169-1170.
(8) Chapelle, J . P. Planta Med. 1976, 29, 268-274.
(9) Chapelle, J. P. Phytochemistry 1976, 15, 1305-1307.
(10) Recio-I glesias, M. C.; Marston, A.; Hostettmann, K. Phytochemistry 1992, 31, 1387-1389.
(11) Bianco, A.; Passacantilli, P. Phytochemistry 1981, 20, 1873-1876.
(12) Erdelmeier, C. A. J.; Wright, A. D.; Orjala, J .; Baumgartner, B.; Rali, T.; Sticher, O. Planta Med. 1991, 57, 149-152.
(13) Bokern, M.; Wray, V.; Strack, D. Phytochemistry 1987, 26, 32293231.
(14) Otsuka, H.; Yao, M.; Kamada, K.; Takeda, Y. Chem. Pharm. Bull. 1995, 43, 754-759.
(15) Markham, K. R.; Ternai, B.; Stanley, R.; Geiger, H.; Mabry, T. J . Tetrahedron 1978, 34, 1389-1397.
(16) Matsuura, S.; Iinuma, M. Chem. Pharm. Bull. 1978, 26, 1936-1941.
(17) Nishizawa, M.; Izuhara, R.; Kaneko, K.; Koshihara, Y.; Fujimoto, Y. Chem. Pharm. Bull. 1988, 36, 87-95.
(18) Abe, H.; Marumo, S. Agric. Biol. Chem. 1972, 36, 42-46.
(19) Rumbero-Sanchez, A.; Vazquez, P. Phytochemistry 1991, 30, 311313.
(20) Arriaga, F. J.; Rumbero, A.; Vazquez, P. Phytochemistry 1990, 29, 209-213.
(21) Oku, A. J. Org. Chem. 1992, 57, 1412-1421.
(22) Mpondo, E. M.; Garcia, J. Planta Med. 1990, 56, 125.
(23) Kakuda, R.; Imai, M.; Yaoita, Y.; Machida, K.; Kikuchi, M. Phytochemistry 2000, 55, 879-881.

NP030217H

[^0]: * To whom correspondence should be addressed. Fax: +81-78-441-7545. E-mail: tanahash@kobepharma-u.ac.jp.
 ${ }^{\dagger}$ K obe Pharmaceutical University.
 \# National K aohsiung Normal University.
 ${ }^{\text {§ }}$ Present address: Department of Occupational Safety and Health, Chang J ung Christian University, Tainan, Taiwan, Republic of China.

[^1]: a-e Values with the same superscript are interchangeable.

